O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

At level 9, students are working towards level 10 standards
At level 10, students are working towards level VCE Foundation standards

Integers Game

To play the game:

- Get a set of three dice and roll them all together
- You get 5 rolls each round
- If the sum of the dice is between or including 3 and 10, opposition scored against you while you were on the ice! Take away two points
- If the sum of the dice is between or including 11-18, a team mate scored a goal with your assistance! Give yourself +1 point
- When you land a double or triple, you have scored a goal! Add +2 points to your score
- Jot down how many points you get throughout the round then add them up

Example: Amy rolls

2,3,6 ~ 4,3,2 ~ 5,5,1 ~ 1,2,3~ 6,4,3

	Points awarded / lost					
	TOTAL					
Example:	+1	-1	+2	-1	+1	$\mathbf{+ 2}$
Round 1						
Semi Final						
Grand Final						

- The player with the highest amount of points wins!
What is the total number of outcomes when rolling three dice at once?
$6^{3}=216$
Draw a tree diagram to illustrate all possible results of rolling double numbers in one roll

What is the probability of rolling double numbers in one roll? $\frac{1}{36} \times 6=\frac{6}{36} \quad \therefore \frac{1}{6}$

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
0 0 0 0 0 0 π π	Number and Algebra: Number and Place Value	Literacy Numeracy Creative and Critical Thinking	Level 9 \& 10: Solve numerical expressions with integers
	Statistics and Probability: Chance		Level 9: List all outcomes for two-step chance experiments using tree diagrams. Probabilities to outcomes and overall events are calculated and assigned Level 10: Describe the results of two- and threestep chance experiments, both with and without replacements, assign probabilities to outcomes and determine probabilities of events. Investigate the concept of independence

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Geometry: Angle Properties

1. Calculate the angle at which the puck hits the boards and goes into the net (x).

Students have two ways of retrieving answer:

- Realising that the angle x and 36° are alternate angles, therefore are congruent
$\therefore \boldsymbol{x}=36^{\circ}$
OR
- Determine the third angle of the triangle:
$180^{\circ}-36^{\circ}-90^{\circ}=54^{\circ}$
Subtract this angle from 90 to solve x

$\therefore 90^{\circ}-54^{\circ}=36^{\circ}=x$

2. Using this answer and the other angles given, calculate angle y.

To calculate y, students must first find the opposite angle of 138° by subtracting from 180° and then using that answer with the knowledge that all angles in a triangle adding up to $18 \mathbf{0}^{\circ}$ calculate y
$\therefore y=180^{\circ}-\left[\left(180^{\circ}-138^{\circ}\right)+90^{\circ}\right]$
$\therefore y=180^{\circ}-132^{\circ}$
$\therefore y=48^{\circ}$

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Measurement and Geometry: Geometric Reasoning	Literacy Numeracy	Level 9: Enlargement transformation is used to explain similarity and develop the conditions for triangles to be similar Level 10: Formulate proofs involving congruent triangles and angle properties, Apply logical reasoning, including the use of congruence and similarity, to proofs and numerical exercises involving plane shapes
	Number and Algebra: Patterns and algebra	Creative and Critical Thinking	Level 9 \& 10: Form algebraic equations and apply the distributive law to the expansion of algebraic expressions, and collect like terms where appropriate'

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Measurement: Trigonometry

3. If James is standing at point D, write down his compass and true bearings from point D to point A

Students need to realise that angle $B=36^{\circ}$
\therefore angle $D=36^{\circ}$

For true bearing:

For compass bearing

$360^{\circ}-(90-36)$
$90^{\circ}-36^{\circ}$
$=360^{\circ}-54^{\circ}$
$=54^{\circ}$

OR
\therefore compass bearing $=N 54^{\circ} \mathrm{W}$
$90^{\circ} \times 3+36^{\circ}$
$=260^{\circ}+36^{\circ}$
\therefore True bearing $=306^{\circ}$
4. Given the length of line $A B$, determine the length of $C B$. Give your answer in metres and to two decimal places.
$\operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
$\therefore \operatorname{Cos} 36^{\circ}=\frac{x}{450}$
$\therefore 450 x \operatorname{Cos} 36^{\circ}=x$
$\therefore x=364.06 \mathrm{~cm}$
$\therefore x=3.64 m$

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Measurement and Geometry: Geometric Reasoning	Literacy Numeracy	Level 9: Use the enlargement transformation to explain similarity and develop the conditions for triangles to be similar Level 10: Apply logical reasoning, including the use of congruence and similarity, to proofs and numerical exercises involving plane shapes

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

	Measurement and Geometry: Pythagoras and Trigonometry	Creative and Critical Thinking	Level 9: Apply trigonometry to solve right-angled triangle problems Level 10: Solve right-angled triangle problems including those involving direction
Cartesia 1. Lab 2. Add 3. As Wri y Gr $\therefore m$ $\therefore m$ Su $\therefore 1$ $\therefore 1$ $\therefore c$ $\therefore y$	Planes \& Linear Eq the x and y axis on the C a number scale on both the drill, hockey skaters are requ the linear equation betw $m x+c$ $\text { dient }=\frac{\text { rise }}{\text { run }} \quad \therefore m=\frac{1--}{2--}$ $=\frac{5}{5}$ $=1$ titute in m and a coo $\begin{aligned} & =1 * 2+c \\ & =2+c \\ & =-1 \\ & =x-1 \end{aligned}$	uations Cartesian plane the x and y axis required to pass a puck from ween these two points	point $(2,1)$ and receive the pass at point $(-3,-4)$.
Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Number and Algebra: Linear and nonlinear relationships	Literacy Numeracy Creative and Critical Thinking	Level 9: Find the midpoint and gradient of a line segment (interval) on the Cartesian plane using a range of strategies, including graphing software Level 10: Solve problems involving linear equations, including those derived from formulas
Number During an If 63 of th	Algebraic Equation IHL match, there are 983 e are reserved for VIP and Write an equation to so $x=983-(63+189)$ Solve the equation $\begin{aligned} & \therefore x=983-252 \\ & \therefore x=731 \end{aligned}$ $\begin{aligned} & \text { If } x=946, \text { calculate the } \\ & 946=y-(63+189) \\ & \therefore y=946+(63+189) \\ & \therefore y=946+252 \\ & \therefore y=1198 \end{aligned}$	ss and Substitution 3 seats in the O^{\prime} Brien Group and 189 seats have been pre-p solve for x, where x is the amoun new total of grand stand seat	Arena grandstand. urchased unt of remaining seats in the grandstands

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Number and Algebra: Real Numbers	Numeracy	Level 9: Students express numbers in scientific notation
	Number and Algebra: Patterns and algebra		Level 9 \& 10: Extend and apply the distributive law to the expansion of algebraic expressions

Money and Financial Mathematics

There are 40 lights above each rink. Each light omits 1,000 watts of energy per hour.

1. How much energy does it take to run all of them for one hour?

$$
1,000 * 40=40,000 \text { watts }
$$

2. To run all the lights costs $\$ 38.00$ per hour. How much would it cost to run three quarters of the lights for 3 hours?
Calculate 3/4 of $\$ 38.00$
0.75 x $\$ 38$
$=\$ 28.50$

Multiply by three for three hours

$=\$ 28.50$ x 3
$=\$ 85.50$
3. The cost for a concession to skate is $\$ 24.00$. Use your answer from question 2 to help find out how many concession skaters would need to come in in order to cover the cost of running 3/4 of the lights for three hours.
Give your answer as a fraction and as a whole number rounded up to the next whole one
$\$ 85.50 / 24$
$=3.56$
$=4$ concession skaters would need to come in to cover the cost of lighting

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Statistics and Probability: Data Representation and Interpretation	Literacy Numeracy Creative and Critical Thinking	Level 9: Solve problems involving direct proportion. Explore the relationship between graphs and equations corresponding to simple rate problems Level 10: Connect the compound interest formula to repeated applications of simple interest using appropriate digital technologies

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

Measurement: Pythagoras' Theorem

To meet regulation, the ramp is required to rise one metre for every 12 metres travelled horizontally as shown on the diagram below (not to scale).

1. Use Pythagoras' Theorem to calculate the diagonal length of the ramp

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \therefore C^{2}=1^{2}+12^{2} \\
& \therefore C^{2}=144+1 \\
& \therefore C=\sqrt{ } 145
\end{aligned}
$$

12m
2. If the ramp is required to rise to a level of two metres, calculate the new length of the ramp (hypotenuse). Hint: Use the legal requirement ratio to calculate the horizontal length

Horizontal length (students can alternatively use ratio to calculate diagonal length)
$\frac{1}{12}=\frac{2}{x}$
$\therefore x=24$
$\therefore C^{2}=2^{2}+24^{2}$
$\therefore C=\sqrt{ } 580$
$\therefore C=24.08 \mathrm{~m}$

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Measurement and Geometry: Pythagoras and Trigonometry	Literacy Numeracy Creative and Critical Thinking	Level 9: Investigate Pythagoras' Theorem and its application to solving simple problems involving right angled triangles Level 10: Solve right-angled triangle problems including those involving direction and angles of elevation and depression using Pythagoras' Theorem

Measurement: Similar Triangles
Use ratios (similar triangles) to determine the height of the ramp if the horizontal length is:

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

	Measurement and Geometry: Geometric Reasoning	Literacy Numeracy Creative and Critical Thinking	Level 9 \& 10: Solve problems using ratio and scale factors in similar figures

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

Measurement: Surface Area and Volume

1. The length of the NHL rinks and O^{\prime} Brien Group Arena rinks is 60 m . The width of O^{\prime} Brien Group Arena is 2.05 m wider on each wing than NHL rinks, which is 25.9 m wide. How many metres wide is the O^{\prime} Brien Group Arena Rink?
$25.9+(2.05 \times 2)$
$=25.9+4.10$
$\therefore O^{\prime}$ Brien Group Arena $=30 \mathrm{~m}$ wide
2. If the rink was a rectangle, what would the total surface area of both of the two O^{\prime} Brien Group Arena rinks combined be? Hint: both rinks are the same dimensions
Area of one rink $=30 \times 60 \mathrm{~m}$
$=1,800 \mathrm{~m}^{2}$
\therefore Area of two rinks $=3,600 \mathrm{~m}^{2}$
3. The thickness of ice held on a rink is 3 cm . What is the volume of water required to fill this area of Ice?
$\boldsymbol{V}=\boldsymbol{W} * \boldsymbol{L} * \boldsymbol{H}$
$V=3,600 * 3$
$V=10,800 L$

Domain	Content Strand	Proficiency Strand	Key Elements of Standards
	Measurement and Geometry: Using units of measurement	Literacy Numeracy Creative and Critical Thinking	Level 9: Calculate the surface area and volume of right prisms Level 10: Solve problems involving surface area and volume for a range of prisms

Quadratic Equations: Simplifying, Solving and Graphing

During the weekdays the O^{\prime} Brien Group Arena is open from 9am - 3pm. During this time the amount of skaters in the venue is tracked and then converted into an equation:

$$
-10 x^{2}+60 x=0
$$

1. Simplify the equation

$$
-10 x(x-6)=0
$$

2. Solve for x
$x=0$
$x=6$
3. Find the turning point
$x=\frac{6-0}{2}$
$x=3$

Substitute x for y
$\therefore-10(3)^{2}+60(3)=y$
$\therefore y=-90+180$
$\therefore y=90$
.: Turning Point $=(3,90)$
4. Graph the equation, where x shows the number of hours after opening and y shows the amount of skaters
5. At what time was it the busiest with skaters?

3 hours after opening

O'BRIEN GROUP ARENA MATHEMATICS CURRICULUM

Victorian Curriculum and Assessment Authority Levels Addressed: Levels 9, 10

\therefore 12pm			
Domain	Content Strand	Proficiency Strand	Key Elements of Standards
0 0	Number and Algebra: Linear and non-linear relationships	Literacy Numeracy Creative and Critical Thinking Information and communication technology capability	Level 9: Graph simple non-linear relations with and without the use of digital technologies and solve simple related equations Level 10: Solve simple quadratic equations using a range of strategies. Explore the connection between algebraic and graphical representations of relations such as simple quadratics, circles and exponentials using digital technology as appropriate

